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ABSTRACT 

Let f t  be a C 2 Axiom A dynamical system on a compact manifold satisfying the 
transversality condition. We prove that if Bx(e,t) = ly:dist(fSx, fSy) < ~ for all 
0 -< s -< t l, then vol Bx(~,t) has the order exp(f~ tb(fSx) ds) in the continuous 
time case and exp (T .~  ep(fSx)) in the discrete time case, where ~ is a Holder 
continuous extension from basic hyperbolic sets of the negative of the differen- 
tial expansion coefficient in the unstable direction. An application to the theory 
of large deviations is given. 

1. Introduction 

Let M be an m-d imens iona l  compac t  connec ted  R iemann ian  man i fo ld  together  

with a C 2 A x i o m  A dynamica l  s y s t e m f  t on  it where t E ( - o o , o o )  (cont inuous  t ime 

case) or  t . . . . .  - 2 , - 1 , 0 , 1 , 2  . . . .  (discrete  t ime case). Suppose  tha t  A t , . . .  , A ,  

a re  the  bas ic  hyperbo l i c  sets o f f  t on  M.  Then  the tangent  bund le  T M  res t r ic ted 

to  each Aj can  be wr i t ten  as the  W h i t n e y  sum o f  con t inuous  subbundles  TA,M = 

F "  O I 'cs where in the  discrete t ime case I "cs = I ' s  and  in the  con t inuous  t ime case 

I "~s = I ' °  ® r ~ with I "° being the one -d imens iona l  bund le  t angen t  to  the  f l o w f  t. 

This  decompos i t i on  is invar ian t  wi th  respect  to  the  d i f fe ren t ia l  O f  t o f  f t ,  and  

there  exist cons tan ts  CI ,  U l > 0 such tha t  

( I . I )  IlOf'~ll ~ CIe-~"ll~ll for  ( E r s ,  t _> 0 

and  

(1.2) [ IDf- tgl l  <-Cle -~ ' t l l f J l  f o r ~ ' e r " ,  t_>o. 
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Denote by fit(x) the Jacobian of  the linear map O f  t : [~u _.~ r ; t x  with respect to 

inner products induced by the Riemannian metric. 

Define 

(1.3) 4~U(x) = 

in the continuous time case and 

d%(X)dt t=0 

(1.4) eU(x) = - l og  q-l (x) 

in the discrete time case. The function ~b u is defined only on Uj Aj. We will call a 

continuous function 4~ on M an admissible extension of ~ to all of M if q~ = 4~ ~ 

on each Aj and 4~ is Holder continuous on a neighborhood of Uj Aj. We consider 

the stable and unstable manifolds 

WSx = [ z :d i s t ( f t z ,  f t x )  ~ 0 as t ~  oo} and 

W~ = [ z : d i s t ( f  -tz, f - tx)  ~ 0 as t ~  oo} 

and the center stable manifold W~ s = UteRft(WSx) for x E U j A j .  We assume 

that W~ s and W~ are transverse at each point of intersection. This is called the 

transversality condition (or sometimes the strong transversality condition). 

Put also Bx (E, t) = [ y : dist ( f~x , f~y)  < E for all s E [0, t ]1. 

Trmot~M 1. Suppose that the transversality condition is satisfied, that d~ is an 

admissible extension o f  O u to all o f  M,  and that e > 0 is a small positive number. 

Then, there exists a constant C~ > 0 depending on ~ such that for  any x E M and 

t>_O, 

(1.5) C~ -l < vol(Bx(E, t))exp(-St~(x))  < C~, 

where vol denotes the Riemannian volume and St~(x) = ~ - l o  dp(fnx) in the dis- 

crete time case and St~(x) = fo ¢b(f ux) du in the continuous time case. 

This theorem which generalizes the well-known volume lemma from [BR] will 

be proved in the next section. Two examples at the end of that section imply that, 

in general, the theorem fails to be true if one drops the transversality condition. 

In section 3 we will discuss certain applications of Theorem 1. 

2. Proof of Theorem 1 

Since Uj Aj contains all limit points of orbits o f f  t we have 

LEMMA 1. For any 6 > 0 there exists T(6) such that for  each x E M there is a 

0 < t (x)  < T(6) such thatf t(X)x E Uj %t6(Aj) where ~t6(K) = lY:  dist(y,K) < 6}. 
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We recall that there is a partial ordering < on basic sets with the property that 

if Ai < Aj, then WU(Ai) f'l WS(Aj) #: O. 

Since the transversality condition implies the no cycle property, it follows (see 

[K2, p. 217]) that 

LmaMA 2. For any 0 > 0 small enough there exists a positive 6(0) < 0 such that 

i f  for  some x E M and t > s > 0 one has dist (x, Ai) < 6(0), dist ( fSx,  Ai) > 0 and 

dis t ( f tx ,  Aj) <_ ~(0), then i ~ j and Ai < Aj; i.e. Aj comes after Ai in the filtration 

o f  basic hyperbolic sets. 

We will need also the following results proved in [K1], Lemmas 3.1 and 3.4, and 

in [K2, pp. 133-135]. 

LEMMA 3. T h e r e e x i s t C 2 , p ~ > O s u c h t h a t f o r a n y x E M a n d t > O s a t i s f y i n g  

Supo_<u_<t dist(fUx, Ai) < p with p <_ p~ one can f ind  y E Ai so that 

(2.1) sup dist(fUx, fUy) <- C2p. 
O<u<_t 

L~.MMA 4. T h e r e e x i s t C 3 , p 2 , a 2 > O s u c h t h a t f o r a n y x E A i a n d y E B x ( P 2 , t )  

one has 

(2.2) dist(fSy, fS+°x) <_ C3e-~2mints't-S)max(dist(x,y),dist(ftx,  f t y ) )  

where o = ~(x ,y )  with lal _< C3p2 in the continuous time case and o = 0 in the 

discrete time case. 

We now begin the proof of our Theorem. 

Take an arbitrary x E M. Define vi(x) = in f [ s : f Sx  E ~t0)(Ai)} and wi(x) = 

inf ls  > v i ( x ) : f S x  ~ ql0(Ai)l where 0 and 6(0) are as in Lemma 2. 

If {s : fSx  E t[t~(0) (Ai)} = O,  then set vi(x) = wi(x) = oo. 

We may think of vi(x) (resp. wi(x)) as the first (resp. last) passing time of the 

orbit of x near Ai. 
Let t > 0. If for all i, vi(x) >- t, then by Lemma 1, t <- T(~5(O)), so (1.5) holds 

for an appropriate constant C. Hence we may assume there is an i with vi(x) < t. 

Let si = dim F~ s, ui = dim F~'. 

By [HPPS], the subbundles ~ " I'i ,I'i extend to subbundles I'C~,I'~ ' on a neighbor- 

hood ql.i of Ai which are locally invariant in the sense that if fSz  E °tti for all 

s E [0, t ], then 

(2.3) Dzft(~c~) = Fir, z ~  cs 

and 

(2.4) t - ~ " u D z f  (F/z) = r,s,z. 
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Moreover the local stable and unstable manifolds of points in At extend to fam- 

ilies { ff '~ }, { I~ '  } of disks which are also locally invariant and depend continu- 

ously on compact parts in the C 2 topology. Note that dim I~ "cs = si and dim I~'~' = 

ui for z E qti. 

Let 

(2.5) vi,(x) < wi,(x) <- vi2(x) < wi2(x) < "  "< vi,(x) < t 

where I is as large as possible. We may and do assume that 'tt0(Ai) C ql.~ and 

fwi(X)x E tU-i. 
By Lemma 2, Ai, < Ai2 < " '"  < A~; i.e., the orbit o f x  goes through neighbor- 

hoods of  a linearly ordered chain in the filtration. We remark also that Axiom A 

and the transversality condition imply that u~, > ui2 ->" • • > ui~. By Lemma 1, we 

have 

I 
(2.6) 0 _< t - ~ (min(t, wit(x)) - vii(x)) < IT(~(O)). 

j = l  

Thus, the total time the orbit of x spends away from [.)~ qt~(o) (A~) is bounded. 

In the following, it will simplify notation if we suppress the dependence on x and 

re-label the subscripts of  the v's, w's, u's, s's so that we write vj, wj,uj,sj,  for 

vb(x), wi~(x), u b, sij with 1 < j _< 1. If  f t x  E qto (Ai~), we redefine wl to be t, so 

that,  in any case, we have t > wt and t - wl < T(5(O)) by Lemma 1. 

To estimate vol (Bx (e, t)), we will decompose Bx (~, t ) into smooth foliations of 

different dimensions, each of which will allow volume estimates in terms of un- 

stable Jacobians. Our decomposition is inspired by the tubular families of [P] and 

[PS], but our decomposition is much simpler. Similar decompositions into folia- 

tions of different dimensions were used by R. C. Robinson in [R] to prove general 

structural stability theorems. 
To motivate the general constructions, we begin by considering a Morse-Smale 

diffeomorphism of a 3-dimensional manifold M having two saddle fixed points 

Pl,P2 with dimWU(p~) = 2, dimW'(p2) = 2 and such that W"(p~) has a curve 3' 

of  transverse intersections with WS(p2) as in Fig. 1. 

Suppose the eigenvalues of D f ( p l ) a r e  )kl,)k2,)k 3 with I < 1 < I X l-< I, 
and those of Df(p2) are X~,~,[,X~ with I X~l < [X[] < 1 < [)~l. Consider a point 

x near W~(pl) and integers Ti, T2 > 0 such that fr~ x is near % f~x  is near W~(pl ) U 

W~(p~) for 0 < s _< TI and f~x  is near W~(p2) U W~(p2) for Tl -< s < Tj + T2. 

For simplicity, assume f is linear in coordinate systems near p~ and P2. 

In the following, we use the notation A - B for positive real numbers A , B  to 

mean that there are constants C1,C2 with 0 < C~ < A B  -~ < C2. For e > 0 small, 
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i'. °'  

/ 

Fig. i. 

Bx(e, Tl) is a product B~ x B~' where B~ is a curve near WS(pl) of length -E 

and B~' is a 2-disk nearly parallel to W"(pl) of area -(X1),2) - r '  e 2. Further, f 

contracts in the ),3-direction and expands in the (X~, X2)-direction, so f r~ (Bx (e, Tl )) 
is a product/]~ x / ~ '  where 

length(/~) - )~r,~ and area(/~') - e z. 

Analogously, Bfr, x(e, T2) is a product B~ x B~' where B] is a 2-disk of area 

- e  2 and B~' is a curve of length -(X~)-7"2e. Let G, denote the intersection 

fr ,  (Bx(e, TI )) fq BfT~x(e, T2). Thus, G, is a parallelotope of size - e  in the 7-direc- 

tion, of size - (~,~)-r:e in the ~,~-direction, and of size -X; '  e in the k3-direction. 

Clearly, Bx(e, T1 + T2) =f-r~G,.  In this example, the volume of B~(e, T1 + T2) 

is easily estimated in many ways, but we wish to proceed in a manner indicative 

of the general case. 

For z E Bx(e, TI + T2), write z = (zl,z2) with zl ~ B~ and z2 E B~'. Then, the 

2-disk {zi] × B[ is mapped b y f  r~ to a 2-disk near W"(pl). Take a smooth foli- 

ation • by curves of fr ' ([z l}  x B~) each of which is nearly parallel to W"(p2). 
For ~ E q:, the length o f~  f') G, is - (),~)-T~e. Thus, by Fubini's theorem, the area 

offr~({zll×B~')f ' lG,-(X~)-r2e. ForeachO<s < 7 " l , f - ( f ~  r~([zl}×B~)OG~) 
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is nearly parallel to W"(p~) ,  so each iterate o f f  -1 contracts its area by ()~)~2) -1. 

Thus, 

area([zl} x B~ N f - r~G~)  - ()~l;k2)-r~(h~)-r2E. 

This holds for each z~ E Bf, so again Fuhini's theorem gives 

vol(Bx(e, T1 + T2)) - (~l~2)-rl()k~)-T2e 2 -- exp(S~r~+r2(x))e 2. 

We now proceed to the general decomposition of  Bx(¢, t ) .  

It will be convenient to make a definition connected with the decomposition we 

shall give. 

Let (~ _c 1]~=1 M = [(zl ,z2 . . . . .  Zl) : zk E M I  be a subset of  the/-fold product of 

M with itself. For 1 _< i _< l, let (~i be the projection of  (~ onto the product of  the 

first i factors: 

~ i  = [(Zl . . . . .  zi) : there are zi+l . . . . .  zl with (zl . . . . .  zi,zi+l . . . . .  zt) E (~1. 

Let k be an integer between 1 and dim M. By a k-disk we mean a smooth map- 

ping 3' from the unit k-disk D k in Euclidean space R k into M. Usually we refer to 

the image of  the k-disk "y as a k-disk also. 

Given x , e , t , ~  as above, an (x,~,t,t~)-disk family is a collection {Fz~ ..... zk: 

1 _< k _< II of  subsets of  M indexed by elements of  [.J~=~ (~,- such that 

(1) For fixed ( Z l , ' ' '  ,Zk) E (~k, Fz~ ..... zk is a C l uk-disk and fW*F~ ..... z, is C 1 

near a part of  I~u( fWkx)  and has diameter C.e. 

(2) For (zl . . . . .  zk) E (~k, [Fz~ ..... zk.z: (Zl . . . . .  zk ,z )  E tSk+l} is a smooth foli- 

ation of  Fz~ ... . .  z, N Bx(E, wk+l) (recall that Uk --< Uk-l). 

(3) For each 1 _< k _< l, there is an (sk + uk-i - n)-disk Dk c_ I~'~s(f~kx) (which 

may reduce to a single point) such that f vk (Fz ~ ..... xk-~. z) N Dk = I z ]. I f  Dk 

is not a single point, then its diameter is of  order C.e. 

(4) I.J(z ~ ..... z,)eeFz~ ... . .  z, = Bx(e,  w~) and this is a disjoint union. 

LEMMA 5. There is a set (~ ~_ 1-[~=1 M for  which an (x,e,  t ,(~)-disk f ami l y  

exists. 

We assume Lemma 5 for the moment and proceed to prove Theorem 1. In the 

following, it will be convenient to denote by C(e)  a function of e, independent 

of  t, which is allowed to change in each equation in which it appears. We shall also 

use the notation A - C (~ )B  to mean that there are functions C~ (~), C2(~) such 

that Cl(e)  < A B  -~ < C2(e). 

Using the locally invariant families { l~z ~ }, { I~z ] one can easily extend the proof 

of  the Bowen-Ruelle volume lemma on a hyperbolic set A~ (see [BR]) to a small 
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neighborhood of At. This extended volume lemma which we will call the local 

volume l emma  says that (1.5) is true provided f S x  E qt~co ) (Ai)  for all s E [0, t ] .  

In fact, this follows from Lemmas 3 and 4 together with the Bowen-Ruelle vol- 

ume lemma. Alternatively, one can prove the local volume lemma using the tech- 

niques in [PSh]. 

We will need the following lemma, some variant of which is usually proved as 

part of the proof of the Bowen-Ruelle volume lemma. 

If  D is a ui-disk, we use voli(D) to denote its ui-volume. 

LE~MA 6. Suppose  f S x  E qJ-6(0) (Ai) f o r  all s E [0, :3]. Let  W be a ui-disk C 2 

near a p a r t  o f  f f ' u ( f a x ) .  Then, 

voli ( f  -~ W) - exp (S~(x)). voli (W). 

It is this lemma which requires the Holder continuity of ~ on ~t0 (AD. 

Consider the (x,¢,t,~)-disk family [Fz, ..... z,: 1 <_ k <_ 1]. The sets [Fz~ ..... z,: 

(zl . . . . .  zt) E ~l  give a decomposition of B~(~,wt) and each f~'Fz~ ..... z, is a 

ut-disk near f f '~ ( f~ Ix )  of diameter C(e). Let 

Pz, ..... = ..... n - 

Since t - wt < T(8(0)), we have that/~z~ ..... z, is also a urdisk with diameter C(e) 

provided ~ is small enough depending only on f. 

Moreover, 

Bx(e , t )  = Bx(¢,  wt) N f - ~ ' B f ~ , x ( ¢ , t  - wt), 

SO 

fWIBx(e , t )  = fW'Bx(e ,  wt) f ) B f . , x ( e , t -  wt) = U ffz~ ..... z,. 
Z l ,  . . . , Z l  

Thus If-WIFz, ..... zt] gives a decomposition of Bx(e , t ) .  

We will show that 

vo,(..,( u . . . . .  

ZI~ ,Zl 

to prove Theorem 1. 

To begin, we have voll(ffZl ..... z~) - C(e). 

By Lemma 6, we see that fv~-w~ shrinks the urvolume of each ffz~ ..... z, by about 

exp( S~,_v,(fV'x)) .  Thus, 

volt( f ° ' -w ' (  f f  z~ ..... z,)) ~ exp( S~,-v,( fV'x))  . C  ( ~ ). 
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Let Gz, ..... z,_, = Uz,eo~ f~ -wt ( f z~  ..... z,), so that this is a ut_l-disk near fO~x. 

If  Dt reduces to the point [zt}, then ut_~ = ut, and, trivially, 

(2.8) volt_l ( Gz, ..... z,_~ ) - exp( S*w,-o,( fV'x)) • C ( ¢ ). 

If  Dt is a non-trivial disk of  diameter C(¢), then Fubini's theorem gives (2.8). 

Let Fz, ..... z,-z =fw'-'-V'Gz~ ..... z,_, so this is a ut_l-disk near fw~-lx. Since vt - 

Wt-l <- T(cS(O)), we have 

volt-l  (zj?D, f f  Zl ..... zt-,) -- exp( S~,-w,_, ( fw ' - '  x)) "C( e ) • 

Now, apply similar arguments to the ut_~-disks fz~ ..... zt-,. 

Setting t~z~ ..... z,-2 = kJz,_~eo,_~.z,eo, fv ,_ , -~, ( f~ ,  ..... z,), we have 

v°lt-2(t~z~ .... z,-2) - exp(S~,_l_v,_,(fv'-~x)) x * . • e p(S~,_w,_,( fw'-~x)) .C(e)  

4~ - exp(S~,_v,_~ ( fv ' -~x)) .  C(e) .  

Continuing in this manner gives 

vol (z,,U. ..z fV'-w'(  f z, ..... z,) ) - exp( S~,-ot ( f ° '  x)) "C ( ~ ) • 

Since Vl < T(6(O)) and t - wt <- T(6(O)), we have 

vol(B~(e, t ) )  = v o l (  U f-W'(Fz,  ..... z,)) - exp(S~wt(X)).C(e) 
Z l ,  ,Zl 

and exp(Sw*,(x)) - exp(St*(x)) which gives (2.7). • 

Now we prove Lemma 5. 

We begin with a smooth foliation q: of a small convex neighborhood ~1 o f f  ~ x  
into ui-disks C 1 near ff '~(fV~x) and Dl = ~¢i f3 f f ' c~( f~x) .  Let 

6~ = {z: 3 F E  q- with F N  D~ = {z}}. 

Then, for each F E q:, fWl-O, (F  f) Bfo,x(e, Wl - v~)) is a C ~ ul-disk of  diameter 

C(e)  near a part of  f f /~(fWlx) .  We let 

[Fz~ } = f - v t  IF  f') Bf~,x(e , wl - vl) : F  E %,F CI Di = [Zl }} f') Bx(e, vl).  

For zl E D1, f~2 (F~l) is a ul-disk C 1 near fv : -w,  (if,,, ( fw,  x)). Choose points 

x~ E A~, x2 ~ Az such that f ~ ' x  is near xt and f ~ x  is near x2. Continuity of  the 

families {if, u} and [ff'~} gives that f f ' " ( fW'x ) i s  C ~ near W~(Xl)and l~s ( f "~x )  

is C ~ near W~(x2). Since v~ - w~ <_ T(~5(O)), and fV: -~ (WU(Xl ) )  is transverse to 
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WCS(x2), we have that fV~(Fzl) is transverse to ff"cs(f~'x). Thus,/92 = f ~ ( F z l )  f3 

ffzcs(fV2x) N qt, (fV2x) is either a point or a smooth (ut + s2 - n)-disk of  diam- 

eter C(e). 
In the latter case, fV2(Fz t) f'l ~ , ( f °2x )  can be fibered by uz-disks Fix which are 

indexed by z2 E D2 and satisfy: 

(1) Fz2 N D2 = [z2l and Fz, is transverse to D2 at z2. 

(2) The angle between Fz, and ff'CS(z2) at z2 is bounded below by a constant 

independent of  z2. 

(3) The u2-volume of  Fz, is of  order C.e. 

We let 

:Zl,Z2 ~" FZ2 N BfV2x(G , W 2 -- 02)° 

The k-lemma [P] implies that, for s E [0, WE -- V2], the angle betweenf'(.~z.z,) 
and ~:c'(fs+~2x) remains bounded below by a constant independent of z2, and 
(assuming that w2 - v2 is large)fW2-"2(/~z,,z2) is C I near a part of WU(f~2x). Also, 
since f behaves hyperbolically near each fs+"~x, the u2-volume offW~-"~(:zl,z ~) is 
of order C.G. 

Now, we set (12 = D~ x D2, and we get Fzl,z2 by pulling back :zl,z2 to a small 
neighborhood of x using f-.2 and intersecting with Bx(G, v2). That is, 

Fz,,z 2 --- f-v2(:zt,z2) N Bx(e, v2). 

Continuing in this manner proves Lemma 5. • 

REMARK 1. Using some of  the arguments in the proof  of  Theorem 1 (without 

computing volumes) one can prove a global shadowing result for systems satisfy- 

ing Axiom A and the transversality condition. This result says that i f f  is an Ax- 

iom A diffeomorphism on M satisfying the transversality condition, then there 

exist C, G0 > 0 such that for any G-pseudo-orbit [ x~ ] with G _ G0 there exists y E M 

such that dist(fgy, x~) < CG. In the case of flows one obtains shadowing with time 

reparametrization. A slightly weaker version of  this shadowing result was stated 

by Robinson on page 430 in [R]. 

REMARK 2. In general, Theorem 1 fails to hold if the transversality condition 

is not satisfied. We now give two examples illustrating this. 

EXAMPLE 1. Consider a smooth gradient vector field X on a compact surface 

M with a saddle connection 3' between two hyperbolic critical points p,p'. Thus if 

rf is the flow associated to X, and x E 7, we suppose that ~t(x) ~ p  as t --, -oo  

while ~t(x) ~ p '  as t --, oo. 



218 Y. KIFER AND S. E. NEWHOUSE Isr. J. Math. 

x 

( 
Y 

) 

\ /  

Fig. 2. 

x+ 

( 
1 

Let r. 0 be a transverse arc to 3' at Xo E 3', let r._ be a transverse arc to WS(p) at 

x_,  and let r~+ be a transverse arc to WU(p ") at x+ as in Fig. 2. We may and do 

assume that ~t is linear in C ~ coordinates near p and p'. Let X~ ,X2 be the eigenval- 

ues of  the derivative of  X at p,  and let X~,X~ be those at p '  with X~ < 0 < X2 and 

X~ < 0 < X~. 

Consider a point y in r~ o near Xo. Let t~ = t~ (y)  be the least positive t such that 

n-t~(y) E ~_, and let t 2 = t2(y) be the least positive t such that nt2(y) E r.+. As- 

suming d is t (x_ ,p)  - d is t (x+,p ' )  - h, we have 

dist(y, xo) - h e  x l t '  - he -x'2t2. 

If e > 0 is small, y is close to Xo, and z~ - ~-t, (y) ,  then Bzl (e, h ) is a small cur- 

vilinear rectangle near x_ whose height is - e  and whose width is - e  -×2t' .e. Also, 

~ltm(Bz, ( e ,  t l ) )  is a smooth rectangle containing y whose height is - e  x't~ .E and 

width - e .  Since e xlt~ -- e -x~t2, a fixed proportion of rlt~(Bz, (e,h))  is in B y ( e ,  t2) .  

Thus, 

vol(Bz, (e,h + t2)) -> C,e -x2t' 

while S~+t2(zl) - --k2tl -- X~t2. Thus, for large tl and t2, vol(B~, (e,h + t2)) is 

much bigger than exp(S~+t2 (zl)).  

EXAMPLE 2. In this example of a diffeomorphism in dimension three, there are 

fixed points p ,p '  such that: 
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(1) dimWU(p) = 1. 

(2) dimWS(p ") = 1. 
(3) W"(p) and WS(p ') have a single orbit O(z) of intersections. 

(4) f is linear in suitable coordinates near p and near p'. 

(5) The eigenvalues of  Df(p) are real, say hI(P),X2(P),X3(P) and satisfy 

)~l(P) > 0, )~2(P) < 0, X3(p) < 0. 
(6) The eigenvalues of  Df(p') are real, say Xl (p ' ) ,  ~2 (P'), )~3 (pt) and satisfy 

)~l(P') > 0, }~2(P') > 0, X3(p') < 0. 
Let W~', W~' denote f-invariant line segments near p '  tangent at p '  to the eigen- 

spaces of  X1 (P ' ) , ) ,2 (P ' ) ,  respectively. We assume that near z, WU(p) contains a 

line segment which is parallel to W~' as in Fig. 3. We also assume that W~' is par- 

w*~..., x3o) 
\ 

X 2 (P) 

/ 

/ 

/ 

xl~,), o,½~,)< o, x3~ <o 

/ U 
w (p) 

1 

Fig. 3. 

< 

wS(p ') 

/ '  

\ ~(p') 

(p') 

u : P '  

W 2 

-¢ 

W u (p') 
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allel to the direction of  )k2(p).  Then, for suitable large h ,  tz and small ~, we have 

the following. 

Ifz~ is a point whose orbit stays near WU(p) O W~(p) for time 0 _< t ___ tt and 

stays near W"(p') U W~(p ') for time tt - t ___ tl + t2, then: 

(1) In the direction Wg, fJBz,(~,j) is less than e for tt ___j <- tl + t2. 

(2) In the direction of  W~, f t tBz~(e,tl)  is already of  size -E,  so in this 

direction 

Thus, 

while 

Bz t (¢,/1 + t2) - f:e--(tlhl(P)+t2hl(P')) 

v O I B z l ( 6 , t l  + t2) -- ~.3e-(ttxltp)+t2Xt(P')) 

S~+t2(zl) - - (k l (p) t l  + h l (p ' ) t 2  + )~2(P')/2). 

3. Applications 

In this section for any set G C Mle t  t3 denote its closure and let Gt = [x :fUx E 
for all u E [0, t]}. Let dVlo denote the set of all f t - invariant  probability measures 

whose support is contained in t~. For # E d~o,  let h~(f ~) denote the entropy of  

f l  with respect to ~. Let C(G) denote the space of  continuous functions on G. 

Let e > 0. A subset E of  G t is called (e, t)-separated if whenever x ~: y E E there 

is a j E [0, t)  such that dist (fJx, fJy) > e. For t E C(G), let St ¢ (x) = Z,=o i ( f t - 1  nx) 
in the discrete time case and S~(x) = .(~ i(fUx) du in the continuous time case. 

Set 

Z~(~,t,i) = sup I ~ exp(St~(x)) :E C Gt is (~,t)-separated] . 
\ xEE ) 

The topological pressure Pc ( i f )  is defined to be 

1 
lim l imsup l o g Z G ( e , t , i ) .  
e~0 t~oo -t 

The variational principle extended to non-invariant sets in Proposition 3.1 of 

[K3] says 

(3.1) Po(i) = sup ( l i d #  

where this is defined to be -oo  if dl//o is empty. 

+ h~(fl)) 
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Introduce the occupational measures 

lf0'  ,,,as 

in the continuous time case and 

1 t - - I  

k=O 

in the discrete time case. Remark that Sd ~b d~t~ = StC(x) for any x E Gt. We denote 

also by m the Riemannian volume on M. 

THEOREM 2. Let f t  be a C 2 Axiom A dynamical system on M satisfying the 
transversality condition, and let cb be as in Theorem 1. Suppose that G C M is an 
open set such that for each basic hyperbolic set Ai either Ai C G or Ai f) G = ~.  
Then for any V E C(M),  

(3.2) lim ~ log f c  exp(t  f c  Vd~t~) dm(x) = Pc(~ + V). 
t--* Oo t 

In particular, taking V - 0 we obtain 

(3.3) lim -1 log vol G, = PG(¢). 
t--*o~ t 

Furthermore, for any closed subset K of probability measures on G, 

(3.4) 
1 

limsup l ogmlx :~ txEKl  < - i n f l I ( ~ ) : p E K l  < P~($) 
t--* Oo 7 ~ - -  

where 

= f - f - 
if v E d~c, 

PROOF. If G = M, then Theorem 1 with Propositions 3.2, 3.3, and Theorem 

3.4 from [K3] yield (3.2)-(3.4) directly. Now suppose that G C M is a proper open 

subset satisfying the conditions of the theorem. It suffices to prove (3.2) since (3.3) 

is a partial case of (3.2), and (3.4) follows from (3.2) by means of the first part of 

Theorem 2.1 from [K3] together with the variational principle (3.1). 
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Let E > 0 be small enough so that we can choose a closed set X satisfying: 

(1) X C  G. 

(2) in fy~xdis t (y ,M\G)  > E. 

(3) X contains the same basic hyperbolic sets as G. 

Then 

(3.5) dVix = d~c.  

Let 

~,~(V) = sup{I V ( y )  - V(z)l : y , z  ~ M and dis t (y , z )  < el .  

Note that 3'~ (V) ~ 0 as E ~ 0. 

If  E is an (E,t)-separated set and y,z  E E, then the sets By(e/2, t )  and 

Bz(E/2,t) defined before Theorem 1 are disjoint. Moreover, if X contains this 

(E,t)-separated set E and y E E, then By(e/2,t)  C G. Let (B = (B(e,t) be the col- 

lection of  subsets of  Xt which are (E, t)-separated. 

I f  we put 

then, by (1.5), 

d G  t \ dG  

E•(Bi. x E E  \ , IX  

(3.6) 

,suo  exp(,S 1 
EE(B I. x E E  

Take I/t log of  both parts of  (3.6), let t -~ oo, and then let E ~ 0. Using (3.6) and 

Proposition 3.1 of [K3], we get 

(3.7) lim inf -1 log Qt(V) > Px((a + V) = Pa((a + V). 
t - - ~  t 

I f  E is a maximal (e, O-separated set in Gt, then Ux~E Bx(e, t) D Gt, so, if g = 

g(e ,  t) denotes the collection of  subsets E of  Gt which are (E, t)-separated, then 

(1.5) gives 

EU_C~ [~ x E E  

(3.8) 

E e ~  t. x e E  
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Again, take 1/t log of both parts of 3.8, let t -~ o% and e -~ 0. From Proposition 

3.1 of [K3], we get 

1 
l im sup log  Qt( V) < PG( O + V).  

/400 t 

This together with 3.7 gives 3.2 and completes the proof of Theorem 2. • 

By the variational principle 3. I, 

PG(O) = m/ax{PA,(O) : Ai C G}. 

It is known (see [BR]) that PA~(0) --< 0, and PA,(O) = 0 if and only if Ai is an at- 

tractor. Thus, if (~ is disjoint from the attractors, then Pc(0)  < 0 and (3.3) gives 

a precise escape rate of points from G strengthening the results of [W1] and [W2]. 

Remark also that (3.4) is the so-called upper large deviation bound for occupa- 

tional measures. The corresponding lower bound usually will not be true if G con- 

tains more than one basic hyperbolic set (see Remark 3.3 in [K3]). 
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